control motor using face camera <br /> <img alt="" height="240" src="" width="320" /><br /> using System;<br /> using System.Collections.Generic;<br /> using System.Drawing;<br /> using System.Windows.Forms;<br /> using Emgu.CV;<br /> using Emgu.CV.Structure;<br /> using Emgu.CV.CvEnum;<br /> using System.IO;<br /> using System.Diagnostics;<br /> using System.Media;<br /> using System.Net.Sockets;<br /> using DirectShowLib;<br /> using System.IO.Ports;<br /> <br /> <br /> namespace MultiFaceRec<br /> {<br /> public partial class FrmPrincipal : Form<br /> {<br /> //Declararation of all variables, vectors and haarcascades<br /> Image<Bgr, Byte> currentFrame;<br /> Capture grabber;<br /> HaarCascade face;<br /> HaarCascade eye;<br /> MCvFont font = new MCvFont(FONT.CV_FONT_HERSHEY_TRIPLEX, 0.5d, 0.5d);<br /> Image<Gray, byte> result, TrainedFace = null;<br /> Image<Gray, byte> gray = null;<br /> List<Image<Gray, byte>> trainingImages = new List<Image<Gray, byte>>();<br /> List<string> labels= new List<string>();<br /> List<string> NamePersons = new List<string>();<br /> int ContTrain, NumLabels, t;<br /> string name, names = null;<br /> bool CapturingProcess = false; <br /> TcpClient _tcpClient = null;<br /> bool CapRunning = false;<br /> private int _CameraIndex;<br /> bool CamAuto = false;<br /> bool ConnectAuto = false;<br /> string revision = "3.7.14";<br /> <br /> <br /> <br /> public FrmPrincipal()<br /> {<br /> InitializeComponent();<br /> //Load haarcascades for face detection<br /> face = new HaarCascade("haarcascade_frontalface_default.xml");<br /> //eye = new HaarCascade("haarcascade_eye.xml");<br /> try<br /> {<br /> //Load of previus trainned faces and labels for each image<br /> string Labelsinfo = File.ReadAllText(Application.StartupPath + "/TrainedFaces/TrainedLabels.txt");<br /> string[] Labels = Labelsinfo.Split('%');<br /> NumLabels = Convert.ToInt16(Labels[0]);<br /> ContTrain = NumLabels;<br /> string LoadFaces;<br /> <br /> for (int tf = 1; tf < NumLabels+1; tf++)<br /> {<br /> LoadFaces = "face" + tf + ".bmp";<br /> trainingImages.Add(new Image<Gray, byte>(Application.StartupPath + "/TrainedFaces/" + LoadFaces));<br /> labels.Add(Labels[tf]);<br /> }<br /> }<br /> catch(Exception e)<br /> {<br /> //MessageBox.Show(e.ToString());<br /> MessageBox.Show("No faces have been trained. Please add at least a face (train with the Add face Button).", "EZ-Face Notice", MessageBoxButtons.OK, MessageBoxIcon.Exclamation);<br /> }<br /> }<br /> <br /> <br /> <br /> private void button1_Click(object sender, EventArgs e)<br /> {<br /> //Set the camera number to the one selected via combo box<br /> //This method is no longer used, DirectShow to display device name is now used<br /> //int CamNumber = -1;<br /> //CamNumber = int.Parse(cbCamIndex.Text);<br /> <br /> //This is for reading faces from a video file, for testing only at this time<br /> //String sFileName = @"c:\test.mp4"; //this work with new opencv_ffmpeg290.dll in the bin folder<br /> //grabber = new Capture(sFileName); //this works, but crashes the app once movie stops<br /> <br /> //Initialize the capture device<br /> grabber = new Capture(_CameraIndex);<br /> grabber.QueryFrame();<br /> //Initialize the FrameGraber event<br /> Application.Idle += new EventHandler(FrameGrabber);<br /> button1.Enabled = false;<br /> CapturingProcess = true;<br /> btn_stop_capture.Enabled = true;<br /> groupBox1.Enabled = true;<br /> CapRunning = true;<br /> }<br /> <br /> <br /> private void button2_Click(object sender, System.EventArgs e)<br /> {<br /> try<br /> {<br /> //Trained face counter<br /> ContTrain = ContTrain + 1;<br /> <br /> //Get a gray frame from capture device<br /> gray = grabber.QueryGrayFrame().Resize(320, 240, Emgu.CV.CvEnum.INTER.CV_INTER_CUBIC);<br /> <br /> //Face Detector<br /> MCvAvgComp[][] facesDetected = gray.DetectHaarCascade(<br /> face,<br /> 1.2,<br /> 10,<br /> Emgu.CV.CvEnum.HAAR_DETECTION_TYPE.DO_CANNY_PRUNING,<br /> new Size(20, 20));<br /> <br /> //Action for each element detected<br /> foreach (MCvAvgComp f in facesDetected[0])<br /> {<br /> TrainedFace = currentFrame.Copy(f.rect).Convert<Gray, byte>();<br /> break;<br /> }<br /> <br /> //resize face detected image for force to compare the same size with the <br /> //test image with cubic interpolation type method<br /> TrainedFace = result.Resize(100, 100, Emgu.CV.CvEnum.INTER.CV_INTER_CUBIC);<br /> trainingImages.Add(TrainedFace);<br /> labels.Add(textBox1.Text);<br /> <br /> //Show face added in gray scale<br /> imageBox1.Image = TrainedFace;<br /> <br /> //Write the number of triained faces in a file text for further load<br /> File.WriteAllText(Application.StartupPath + "/TrainedFaces/TrainedLabels.txt", trainingImages.ToArray().Length.ToString() + "%");<br /> <br /> //Write the labels of triained faces in a file text for further load<br /> for (int i = 1; i < trainingImages.ToArray().Length + 1; i++)<br /> {<br /> trainingImages.ToArray()[i - 1].Save(Application.StartupPath + "/TrainedFaces/face" + i + ".bmp");<br /> File.AppendAllText(Application.StartupPath + "/TrainedFaces/TrainedLabels.txt", labels.ToArray()[i - 1] + "%");<br /> }<br /> <br /> MessageBox.Show(textBox1.Text + "´s face detected and added.", "Training OK", MessageBoxButtons.OK, MessageBoxIcon.Information);<br /> }<br /> catch<br /> {<br /> MessageBox.Show("Enable the face detection first.", "Training Fail", MessageBoxButtons.OK, MessageBoxIcon.Exclamation);<br /> }<br /> }<br /> <br /> <br /> void FrameGrabber(object sender, EventArgs e)<br /> {<br /> label3.Text = "0";<br /> //label4.Text = "";<br /> NamePersons.Add("");<br /> <br /> //This is where the app most often encounters critical errors<br /> //Get the current frame form capture device<br /> currentFrame = grabber.QueryFrame().Resize(320, 240, Emgu.CV.CvEnum.INTER.CV_INTER_CUBIC);<br /> <br /> //Convert it to Grayscale<br /> gray = currentFrame.Convert<Gray, Byte>();<br /> <br /> //Face Detector<br /> MCvAvgComp[][] facesDetected = gray.DetectHaarCascade(<br /> face,<br /> 1.2,<br /> 10,<br /> Emgu.CV.CvEnum.HAAR_DETECTION_TYPE.DO_CANNY_PRUNING,<br /> new Size(20, 20));<br /> <br /> //Action for each element detected<br /> foreach (MCvAvgComp f in facesDetected[0])<br /> {<br /> t = t + 1;<br /> result = currentFrame.Copy(f.rect).Convert<Gray, byte>().Resize(100, 100, Emgu.CV.CvEnum.INTER.CV_INTER_CUBIC);<br /> //draw the face detected in the 0th (gray) channel with blue color<br /> currentFrame.Draw(f.rect, new Bgr(Color.Red), 2);<br /> <br /> <br /> if (trainingImages.ToArray().Length != 0)<br /> {<br /> //TermCriteria for face recognition with numbers of trained images like maxIteration<br /> MCvTermCriteria termCrit = new MCvTermCriteria(ContTrain, 0.001);<br /> <br /> //Eigen face recognizer<br /> EigenObjectRecognizer recognizer = new EigenObjectRecognizer(<br /> trainingImages.ToArray(),<br /> labels.ToArray(),<br /> 3000,<br /> ref termCrit);<br /> <br /> name = recognizer.Recognize(result);<br /> <br /> //Draw the label for each face detected and recognized<br /> currentFrame.Draw(name, ref font, new Point(f.rect.X - 2, f.rect.Y - 2), new Bgr(Color.LightGreen));<br /> <br /> }<br /> <br /> NamePersons[t-1] = name;<br /> NamePersons.Add("");<br /> <br /> <br /> //Set the number of faces detected on the scene<br /> label3.Text = facesDetected[0].Length.ToString();<br /> <br /> /*<br /> //Set the region of interest on the faces<br /> <br /> gray.ROI = f.rect;<br /> MCvAvgComp[][] eyesDetected = gray.DetectHaarCascade(<br /> eye,<br /> 1.1,<br /> 10,<br /> Emgu.CV.CvEnum.HAAR_DETECTION_TYPE.DO_CANNY_PRUNING,<br /> new Size(20, 20));<br /> gray.ROI = Rectangle.Empty;<br /> <br /> foreach (MCvAvgComp ey in eyesDetected[0])<br /> {<br /> Rectangle eyeRect = ey.rect;<br /> eyeRect.Offset(f.rect.X, f.rect.Y);<br /> currentFrame.Draw(eyeRect, new Bgr(Color.Blue), 2);<br /> }<br /> */<br /> <br /> }<br /> t = 0;<br /> <br /> //Names concatenation of persons recognized<br /> for (int nnn = 0; nnn < facesDetected[0].Length; nnn++)<br /> {<br /> names = names + NamePersons[nnn] + ", ";<br /> }<br /> //Show the faces procesed and recognized<br /> imageBoxFrameGrabber.Image = currentFrame;<br /> label4.Text = names;<br /> //This logs the faces recognized<br /> if (String.IsNullOrEmpty(names))<br /> {<br /> textBox2.Text = "off";<br /> string m = comboBox1.Text.ToString();<br /> string s = textBox2.Text.ToString();<br /> sErial(m, s);<br /> }<br /> else<br /> {<br /> File.AppendAllText(Application.StartupPath + "/RecognitionLog/facelog.txt",<br /> names + DateTime.Now.ToString() + Environment.NewLine);<br /> textBox2.Text = "on";<br /> string m = comboBox1.Text.ToString();<br /> string s = textBox2.Text.ToString();<br /> sErial(m, s);<br /> }<br /> <br /> //<br /> //This sends the name automatically - this needs to be enabled or disabled<br /> //<br /> tbX.Text = "\"" + names + "\"";<br /> btnSetX.PerformClick(); //sends the informations to EZ-Builder<br /> //btngetX.PerformClick(); //gets the information from EZ-Builder - this works by only until recognition stops<br /> //This clears the name value for the next face to be recognized<br /> names = "";<br /> //Clear the list(vector) of names<br /> NamePersons.Clear();<br /> <br /> }<br /> <br /> private void FrmPrincipal_Load(object sender, EventArgs e)<br /> {<br /> this.Text = "EZ-Face " + revision;<br /> //cbCamIndex.Items.AddRange(Camera.GetVideoCaptureDevices());<br /> tbLog.Visible = false;<br /> groupBox1.Enabled = false;<br /> loadUserSettingsToolStripMenuItem.PerformClick();<br /> timer1.Start();<br /> timer2.Start();<br /> if (File.Exists(Application.StartupPath + "/RecognitionLog/facelog.txt"))<br /> {<br /> var fileName = (Application.StartupPath + "/RecognitionLog/facelog.txt");<br /> FileInfo fi = new FileInfo(fileName);<br /> var size = fi.Length;<br /> lb_facename_file.Text = "Face Log File size: " + size;<br /> }<br /> if (CamAuto == true)<br /> {<br /> lb_autorun.Text = "Enabled";<br /> button1.PerformClick();<br /> }<br /> else<br /> {<br /> lb_autorun.Text = "Disabled";<br /> }<br /> if (ConnectAuto == true)<br /> {<br /> lb_autoconnect.Text = "Enabled";<br /> btnConnect.PerformClick();<br /> }<br /> else<br /> {<br /> lb_autoconnect.Text = "Disabled";<br /> }<br /> <br /> <br /> <br /> }<br /> <br /> private void Log(object txt, params object[] vals)<br /> {<br /> tbLog.AppendText(string.Format(txt.ToString(), vals));<br /> tbLog.AppendText(Environment.NewLine);<br /> }<br /> <br /> private void btnConnect_Click(object sender, EventArgs e)<br /> {<br /> tbLog.Visible = true;<br /> try<br /> {<br /> if (_tcpClient != null)<br /> disconnect();<br /> else<br /> connect();<br /> }<br /> catch (Exception ex)<br /> {<br /> Log("Error performing connection action: {0}", ex);<br /> }<br /> }<br /> <br /> private void disconnect()<br /> {<br /> if (_tcpClient != null)<br /> _tcpClient.Close();<br /> _tcpClient = null;<br /> btnConnect.Text = "Connect";<br /> Log("Disconnected");<br /> tbLog.Visible = false;<br /> }<br /> <br /> private void connect()<br /> {<br /> int port = Convert.ToInt32(tbPort.Text);<br /> Log("Attempting Connection to {0}:{1}", tbAddress.Text, port);<br /> _tcpClient = new TcpClient();<br /> IAsyncResult ar = _tcpClient.BeginConnect(tbAddress.Text, port, null, null);<br /> System.Threading.WaitHandle wh = ar.AsyncWaitHandle;<br /> <br /> try<br /> {<br /> if (!ar.AsyncWaitHandle.WaitOne(TimeSpan.FromSeconds(3), false))<br /> {<br /> _tcpClient.Close();<br /> throw new TimeoutException();<br /> }<br /> <br /> _tcpClient.EndConnect(ar);<br /> }<br /> finally<br /> {<br /> wh.Close();<br /> }<br /> <br /> _tcpClient.NoDelay = true;<br /> _tcpClient.ReceiveTimeout = 2000;<br /> _tcpClient.SendTimeout = 2000;<br /> btnConnect.Text = "Disconnect";<br /> Log("Connected");<br /> Log(readResponseLine());<br /> }<br /> <br /> private string sendCommand(string cmd)<br /> {<br /> try<br /> {<br /> Log("Sending: {0}", cmd);<br /> clearInputBuffer();<br /> _tcpClient.Client.Send(System.Text.Encoding.ASCII.GetBytes(cmd + Environment.NewLine));<br /> return readResponseLine(); //original exampled used this: Log(readResponseLine());<br /> }<br /> catch (Exception ex)<br /> {<br /> Log("Command Error: {0}", ex);<br /> disconnect();<br /> }<br /> return string.Empty;<br /> }<br /> <br /> /// <summary><br /> /// Clears any data in the tcp incoming buffer by reading the buffer into an empty byte array.<br /> /// </summary><br /> private void clearInputBuffer()<br /> {<br /> if (_tcpClient.Available > 0)<br /> _tcpClient.GetStream().Read(new byte[_tcpClient.Available], 0, _tcpClient.Available);<br /> }<br /> <br /> /// <summary><br /> /// Blocks and waits for a string of data to be sent. The string is terminated with a \r\n<br /> /// </summary><br /> private string readResponseLine()<br /> {<br /> string str = string.Empty;<br /> do<br /> {<br /> <br /> byte[] tmpBuffer = new byte[1024];<br /> _tcpClient.GetStream().Read(tmpBuffer, 0, tmpBuffer.Length);<br /> str += System.Text.Encoding.ASCII.GetString(tmpBuffer);<br /> } while (!str.Contains(Environment.NewLine));<br /> <br /> // Return only the first line if multiple lines were received<br /> return str.Substring(0, str.IndexOf(Environment.NewLine));<br /> }<br /> <br /> <br /> private void btnSetX_Click(object sender, EventArgs e)<br /> {<br /> sendCommand(string.Format("$FaceName = {0}", tbX.Text));<br /> <br /> <br /> }<br /> void sErial(string Port_name, string data_Send)<br /> {<br /> SerialPort sp = new SerialPort(Port_name, 9600, Parity.None, 8, StopBits.One);<br /> sp.Open();<br /> <br /> sp.Write(data_Send);<br /> sp.Close();<br /> }<br /> private void btn_stop_capture_Click(object sender, EventArgs e)<br /> {<br /> {<br /> if (CapturingProcess == true)<br /> {<br /> Application.Idle -= FrameGrabber;<br /> grabber.Dispose();<br /> //Application.Exit(); //this closes the application<br /> //CapturingProcess = false;<br /> //playorpause.Text = "Play";<br /> }<br /> else<br /> {<br /> Application.Idle += FrameGrabber;<br /> //CapturingProcess = true;<br /> //playorpause.Text = "Pause";<br /> }<br /> } <br /> button1.Enabled = true;<br /> btn_stop_capture.Enabled = false;<br /> groupBox1.Enabled = false;<br /> imageBoxFrameGrabber.Image = null; //sets the image to blank<br /> imageBox1.Image = null; //sets image to blank<br /> }<br /> <br /> <br /> <br /> private void deleteLearnedFacesToolStripMenuItem_Click(object sender, EventArgs e)<br /> {<br /> DialogResult d = MessageBox.Show("Are you sure you want to delete all learned faces?", "Question", MessageBoxButtons.YesNo, MessageBoxIcon.Question);<br /> <br /> if (d == DialogResult.Yes)<br /> {<br /> <br /> if (CapRunning = true)<br /> {<br /> btn_stop_capture.PerformClick();<br /> }<br /> Array.ForEach(Directory.GetFiles(Application.StartupPath + "/TrainedFaces"), File.Delete);<br /> button1.Enabled = false;<br /> DialogResult b = MessageBox.Show("You must close EZ-Face and re-open it for changes to take effect.", "EZ-Face Notice", MessageBoxButtons.OK, MessageBoxIcon.Asterisk);<br /> if (b == DialogResult.OK)<br /> {<br /> Application.Exit();<br /> }<br /> }<br /> else if (d == DialogResult.No)<br /> {<br /> //Do nothing<br /> }<br /> }<br /> <br /> private void aboutToolStripMenuItem1_Click(object sender, EventArgs e)<br /> {<br /> var aboutForm = new About();<br /> aboutForm.revision = revision;<br /> aboutForm.Show();<br /> }<br /> <br /> private void j2RScientificComToolStripMenuItem_Click(object sender, EventArgs e)<br /> {<br /> System.Diagnostics.Process.Start("http://www.J2RScientific.com");<br /> }<br /> <br /> private void instructionsToolStripMenuItem_Click(object sender, EventArgs e)<br /> {<br /> if (File.Exists(@"C:\BotBrain\EZ-Face\Resources\ReadMe.txt"))<br /> {<br /> System.Diagnostics.Process.Start(@"C:\BotBrain\EZ-Face\Resources\ReadMe.txt");<br /> }<br /> else<br /> {<br /> MessageBox.Show("I'm sorry. The ReadMe.txt file could not be found.", "EZ-Face Notice", MessageBoxButtons.OK, MessageBoxIcon.Asterisk);<br /> }<br /> <br /> }<br /> <br /> private void deleteLogOfDetectedFacesToolStripMenuItem_Click(object sender, EventArgs e)<br /> {<br /> DialogResult f = MessageBox.Show("Are you sure you want to delete facelog.txt file?", "Question", MessageBoxButtons.YesNo, MessageBoxIcon.Question);<br /> if (f == DialogResult.Yes)<br /> {<br /> if (File.Exists(Application.StartupPath + "/RecognitionLog/facelog.txt"))<br /> {<br /> File.Delete(Application.StartupPath + "/RecognitionLog/facelog.txt");<br /> }<br /> }<br /> <br /> }<br /> <br /> private void viewSavedFacesToolStripMenuItem_Click(object sender, EventArgs e)<br /> {<br /> Process.Start(Application.StartupPath + "/TrainedFaces");<br /> }<br /> <br /> private void viewLogOfDetectedFacesToolStripMenuItem_Click(object sender, EventArgs e)<br /> {<br /> if (File.Exists(Application.StartupPath + "/RecognitionLog/facelog.txt"))<br /> {<br /> System.Diagnostics.Process.Start(Application.StartupPath + "/RecognitionLog/facelog.txt");<br /> }<br /> else<br /> {<br /> MessageBox.Show("I'm sorry. The facelog.txt file could not be found.", "EZ-Face Notice", MessageBoxButtons.OK, MessageBoxIcon.Asterisk);<br /> }<br /> }<br /> <br /> private void saveSettingsToolStripMenuItem_Click(object sender, EventArgs e)<br /> {<br /> string httpAddress = tbAddress.Text;<br /> string portAddress = tbPort.Text;<br /> if (File.Exists(Application.StartupPath + "/Settings/user_settings.txt")) <br /> {<br /> File.Delete(Application.StartupPath + "/Settings/user_settings.txt");<br /> }<br /> File.AppendAllText(Application.StartupPath + "/Settings/user_settings.txt", httpAddress.ToString() + Environment.NewLine);<br /> File.AppendAllText(Application.StartupPath + "/Settings/user_settings.txt", portAddress.ToString() + Environment.NewLine);<br /> File.AppendAllText(Application.StartupPath + "/Settings/user_settings.txt", _CameraIndex.ToString() + Environment.NewLine);<br /> File.AppendAllText(Application.StartupPath + "/Settings/user_settings.txt", CamAuto.ToString() + Environment.NewLine);<br /> File.AppendAllText(Application.StartupPath + "/Settings/user_settings.txt", ConnectAuto.ToString() + Environment.NewLine);<br /> MessageBox.Show("Your user settings were saved.", "EZ-Face Notice", MessageBoxButtons.OK, MessageBoxIcon.Asterisk);<br /> }<br /> <br /> private void loadUserSettingsToolStripMenuItem_Click(object sender, EventArgs e)<br /> {<br /> if (File.Exists(Application.StartupPath + "/Settings/user_settings.txt"))<br /> {<br /> string[] lines = System.IO.File.ReadAllLines(Application.StartupPath + "/Settings/user_settings.txt");<br /> for (int i = 0; i < lines.Length; i++)<br /> {<br /> string line = lines[i];<br /> tbAddress.Text = lines[0];<br /> tbPort.Text = lines[1];<br /> // _CameraIndex = lines[2];<br /> //int _CameraIndex = Int32.Parse(lines[2]);<br /> _CameraIndex = Int32.Parse(lines[2]);<br /> CamAuto = bool.Parse(lines[3]);<br /> ConnectAuto = bool.Parse(lines[4]);<br /> }<br /> }<br /> else<br /> {<br /> MessageBox.Show("I'm sorry. The user_settings.txt file could not be found.", "EZ-Face Notice", MessageBoxButtons.OK, MessageBoxIcon.Asterisk);<br /> }<br /> }<br /> <br /> private void timer1_Tick(object sender, EventArgs e)<br /> {<br /> if (File.Exists(Application.StartupPath + "/RecognitionLog/facelog.txt"))<br /> {<br /> var fileName = (Application.StartupPath + "/RecognitionLog/facelog.txt");<br /> FileInfo fi = new FileInfo(fileName);<br /> var size = fi.Length;<br /> lb_facename_file.Text = "Face Log File size: " + size;<br /> <br /> if (size > 1000000) //if file is greater then 1mb it will be deleted<br /> {<br /> File.Delete(Application.StartupPath + "/RecognitionLog/facelog.txt");<br /> }<br /> }<br /> <br /> <br /> }<br /> <br /> private void cbCamIndex_SelectedIndexChanged(object sender, EventArgs e)<br /> {<br /> //-> Get the selected item in the combobox<br /> KeyValuePair<int, string> SelectedItem = (KeyValuePair<int, string>)cbCamIndex.SelectedItem;<br /> //-> Assign selected cam index to defined var<br /> _CameraIndex = SelectedItem.Key;<br /> }<br /> <br /> private void btn_refresh_camerlist_Click(object sender, EventArgs e)<br /> {<br /> //-> Create a List to store for ComboCameras<br /> List<KeyValuePair<int, string>> ListCamerasData = new List<KeyValuePair<int, string>>();<br /> //-> Find systems cameras with DirectShow.Net dll <br /> DsDevice[] _SystemCamereas = DsDevice.GetDevicesOfCat(FilterCategory.VideoInputDevice);<br /> int _DeviceIndex = 0;<br /> foreach (DirectShowLib.DsDevice _Camera in _SystemCamereas)<br /> {<br /> ListCamerasData.Add(new KeyValuePair<int, string>(_DeviceIndex, _Camera.Name));<br /> _DeviceIndex++;<br /> }<br /> //-> clear the combobox<br /> cbCamIndex.DataSource = null;<br /> cbCamIndex.Items.Clear();<br /> //-> bind the combobox<br /> cbCamIndex.DataSource = new BindingSource(ListCamerasData, null);<br /> cbCamIndex.DisplayMember = "Value";<br /> cbCamIndex.ValueMember = "Key";<br /> //DirectShowLib-2005 must be added as a reference in the bin folder<br /> }<br /> <br /> private void setCameraToAutoRunToolStripMenuItem_Click(object sender, EventArgs e)<br /> {<br /> CamAuto = true;<br /> lb_autorun.Text = "Enabled";<br /> MessageBox.Show("Remember, please make sure all user settings are set to the correct values - then use the File/Save User Settings feature.", "EZ-Face Notice", MessageBoxButtons.OK, MessageBoxIcon.Asterisk);<br /> }<br /> <br /> private void removeCameraAutoRunToolStripMenuItem_Click(object sender, EventArgs e)<br /> {<br /> CamAuto = false;<br /> lb_autorun.Text = "Disabled";<br /> MessageBox.Show("Remember, please make sure all user settings are set to the correct values - then use the File/Save User Settings feature.", "EZ-Face Notice", MessageBoxButtons.OK, MessageBoxIcon.Asterisk);<br /> }<br /> <br /> private void btngetX_Click(object sender, EventArgs e)<br /> {<br /> string retVal = sendCommand("print($EZfaceCMD)");<br /> tb_getX.Text = retVal;<br /> Log(retVal);<br /> if (retVal == "EZfaceSTOP")<br /> {<br /> if (button1.Enabled == false)<br /> { <br /> btn_stop_capture.PerformClick();<br /> }<br /> }<br /> if (retVal == "EZfaceSTART")<br /> { <br /> if (btn_stop_capture.Enabled == false)<br /> {<br /> button1.PerformClick();<br /> }<br /> }<br /> if (retVal == "EZfaceCLOSE")<br /> {<br /> Application.Exit();<br /> }<br /> }<br /> <br /> private void setAutoConnectToolStripMenuItem_Click(object sender, EventArgs e)<br /> {<br /> ConnectAuto = true;<br /> lb_autoconnect.Text = "Enabled";<br /> MessageBox.Show("This settings enables auto communication connection upon the application running. Remember, please make sure all user settings are set to the correct values - then use the File/Save User Settings feature.", "EZ-Face Notice", MessageBoxButtons.OK, MessageBoxIcon.Asterisk);<br /> }<br /> <br /> private void removeAutoConnectToolStripMenuItem_Click(object sender, EventArgs e)<br /> {<br /> ConnectAuto = false;<br /> lb_autoconnect.Text = "Disabled";<br /> MessageBox.Show("This settings disables auto communication connection upon the application running. Remember, please make sure all user settings are set to the correct values - then use the File/Save User Settings feature.", "EZ-Face Notice", MessageBoxButtons.OK, MessageBoxIcon.Asterisk);<br /> <br /> }<br /> <br /> private void timer2_Tick(object sender, EventArgs e)<br /> {<br /> btngetX.PerformClick();<br /> }<br /> <br /> private void tbPort_TextChanged(object sender, EventArgs e)<br /> {<br /> <br /> }<br /> <br /> private void tbX_TextChanged(object sender, EventArgs e)<br /> {<br /> <br /> }<br /> <br /> private void button3_Click(object sender, EventArgs e)<br /> {<br /> string[] ports = SerialPort.GetPortNames();<br /> foreach (string port in ports)<br /> {<br /> comboBox1.Items.Add(port);<br /> }<br /> }<br /> <br /> private void label3_Click(object sender, EventArgs e)<br /> {<br /> <br /> }<br /> <br /> }<br /> } control motor using face camera using System; using System.Collections.Generic; using System.Drawing; using System.Windows.Forms; using Emgu.CV; using Emgu.CV.Struct... Read more » 5:47 PM